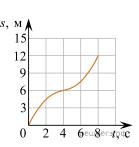
Централизованное тестирование по физике, 2015

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида (1.4 ± 0.2) Н записывайте следующим образом: 1.40.2.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

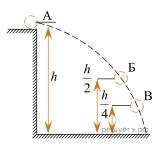
1. Установите соответствие между каждой физической величиной и её характеристикой. Правильное соответствие обозначено цифрой:

	А. Скоро Б. Сила В. Давло	1) векторная в 2) скалярная в		
1) А1 Б1 В2	2) A1 52 B1	3) А1 Б2 В2	4) A2 B1 B2	5) А2 Б2 В1


2. Турист услышал гром через промежуток времени $\Delta t = 9,0$ с после вспышки молнии. Если модуль скорости звука в воздухе $\upsilon = 0,33$ км/с, то грозовой разряд произошел от туриста на расстоянии L, равном:

1) 1,0 км 2) 1,5 км 3) 2,5 км 4) 3,0 км 5) 3,5 км

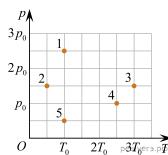
3. Подъемный кран движется равномерно в горизонтальном направлении со скоростью, модуль которой относительно поверхности Земли $\upsilon=30$ см/с, и одновременно поднимает вертикально груз со скоростью, модуль которой относительно стрелы крана u=40 см/с. Модуль перемещения Δr груза относительно поверхности Земли за промежуток времени $\Delta t=1,4$ мин равен:


1) 53 m 2) 50 m 3) 42 m 4) 28 m 5) 24 m

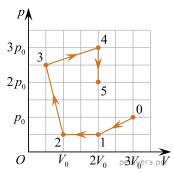
4. На рисунке приведен график зависимости пути s, пройденного телом при равноускоренном прямолинейном движении от времени t. Если от момента начала до отсчёта времени тело прошло путь s=12 м, то модуль перемещения Δr , за которое тело при этом совершило, равен:

1) 12 m 2) 9 m 3) 6 m 4) 3 m 5) 0 m

5. С некоторой высоты h в горизонтальном направлении бросили камень, траектория полёта которого показана штриховой линией (см. рис). Если в точке B полная механическая энергия камня W=20 Дж, то в точке B она равна:


1) 0 Дж 2) 20 Дж 3) 30 Дж 4) 40 Дж 5) 60 Дж

6. В двух вертикальных сообщающихся сосудах находится ртуть ($\rho_1 = 13,6 \text{ г/см}^3$). Поверх ртути в один сосуд налили слой воды ($\rho_2 = 1,00 \text{ г/см}^3$) высотой H = 49 см. Разность Δh уровней ртути в сосудах равна:


- 1) 28,0 mm 2) 32,1 mm 3) 34,9 mm 4) 36,0 mm
 - ы различные состоя-

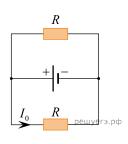
5) 38,7 мм

7. На p-T диаграмме изображены различные состояния идеального газа. Состояние с наибольшей концентрацией n_{\max} молекул газа обозначено цифрой:



- 1) 1 2) 2 3)3 5) 5
- 8. Если при изохорном нагревании идеального газа, количество вещества которого постоянно, давление газа увеличилось на $\Delta p = 120$ кПа, а абсолютная температура возросла в k = 2,00раза, то давление p_2 газа в конечном состоянии равно:
 - 1) 180 кПа
- 2) 210 κΠa
- 3) 240 κΠa
- 4) 320 κΠa
- 5) 360 кПа
- **9.** На p-V диаграмме изображён процесс $0 \to 1 \to 2 \to 3 \to 4 \to 5$, проведённый с одним молем газа. Положительную работу A газ совершил на участке:

- 1) $0 \rightarrow 1$
- 2) $1 \to 2$
- $3) 2 \rightarrow 3$

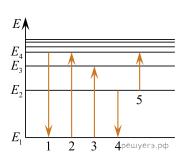

- 10. Физической величиной, измеряемой в амперах, является:
 - 1) электрическое сопротивление 4) электрическое напряжение
- сила тока
 - 3) индуктивность 5) потенциал
- **11.** На рисунке изображены линии напряжённости \vec{E} и две эквипотенциальные поверхности ав и то однородного электростатического поля. Для разности потенциалов между точками поля правильное соотношение обозначено цифрой:

- 1) $\varphi_1 \varphi_2 < \varphi_1 \varphi_3 < \varphi_1 \varphi_4$
- 2) $\varphi_1 \varphi_2 = \varphi_1 \varphi_3 < \varphi_1 \varphi_4$
- 3) $\varphi_1 \varphi_2 < \varphi_1 \varphi_3 = \varphi_1 \varphi_4$ 4) $\varphi_1 \varphi_2 > \varphi_1 \varphi_3 > \varphi_1 \varphi_4$

5)
$$\varphi_1 - \varphi_2 = \varphi_1 - \varphi_3 > \varphi_1 - \varphi_4$$

12. Электрическая цепь, схема которой приведена на рисунке, состоит из источника постоянного тока и двух резисторов, сопротивления которых одинаковы и равны R (см. рис.). Если сила тока, протекающего через нижний на схеме резистор, равна I_0 , то сила тока I, протекающего через источник тока, равна:

- 1) $3I_0$ 2) $2I_0$ 3) $\frac{3}{2}I_0$ 4) I_0 5) $\frac{1}{2}I_0$

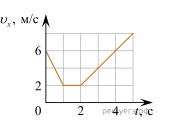

- **13.** Два тонких проводящих контура, силы тока в которых I_1 и I_2 , расположены в одной плоскости (см. рис.). Если в точке O (в центре обоих контуров) модули индукции магнитных полей, создаваемых каждым из токов, B_1 =3.0 мТл и $B_2 = 4.0$ мТл, то модуль индукции B результирующего магнитного поля в точке O равен:

- 1) 0 мТл
- 2) 1 мТл
- 3) 2 мТл
- 4) 3,5 мТл
- 5) 7 мТл
- **14.** Если плоская поверхность площадью $S = 0.012 \text{ м}^2$ расположена перпендикулярно линиям однородного магнитного поля, модуль индукции которого B = 0.40 Tл, то модуль магнитного потока Ф через эту поверхность равен:
 - 1) 4,8 мВб
- 2) 5,6 мВб
- 3) 6,8 мВб
- 4) 7,4 мВб
- 5) 8,1 мВб
- **15.** Если в антенне передатчика за промежуток времени $\Delta t = 10$ мс происходит $N = 1 \cdot 10^3$ колебаний электрического тока, то частота у электромагнитной волны, излучаемой антенной, равна:
 - 1) $1 \cdot 10^4 \,\mathrm{MFu}$ 2) $1 \cdot 10^2 \,\mathrm{MFu}$ 3) $1 \cdot 10^1 \,\mathrm{MFu}$ 4) $1 \cdot 10^{-1} \,\mathrm{MFu}$
 - 5) $1 \cdot 10^{-2} \, \text{MFH}$
- **16.** При нормальном падении света с длиной волны $\lambda = 455$ нм на дифракционную решётку с периодом d=3,64 мкм порядок m дифракционного максимума, наблюдаемого под углом $\theta=30^\circ$ к нормали, равен:
 - 1) 1

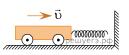
- 5) 5

17. На диаграмме показаны переходы атома водорода между различными энергетическими состояниями, сопровождающиеся либо излучением, либо поглощением фотонов. Поглощение фотона с наибольшей длиной волны λ_{max} происходит при переходе, обозначенном цифрой:

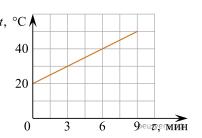
1) 1 2) 2 3) 3 4) 4 5) 5


18. На рисунке изображены два зеркала, угол между плоскостями которых $\beta=105^\circ$. Если угол падения светового луча АО на первое зеркало $\alpha=55^\circ$, то угол отражения этого луча от второго зеркала равен:

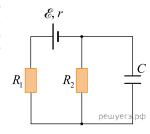
Примечание. Падающий луч лежит в плоскости рисунка.


1) 25° 2) 50° 3) 75° 4) 90° 5) 105°

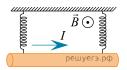
19. Материальная точка массой m = 2,5 кг движется вдоль оси Ox. График зависимости проекции скорости v_x материальной точки на эту ось от времени t представлен на рисунке. В момент времени t = 4 с модуль результирующей всех сил F, приложенных к материальной точке, равен ... H.


- **20.** Тело движется вдоль оси Ox под действием силы \vec{F} . Кинематический закон движения тела имеет вид: $x(t) = A + Bt + Ct^2$, где A = 5.0 м, B = 2.0 м/с , C = 2.0 м/с². Если масса тела m = 2.0 кг, то в момент времен t = 2.0 с мгновенная мощность P силы равна ... **В**т.
- **21.** Трактор, коэффициент полезного действия которого $\eta = 20$ %, при вспашке горизонтального участка поля равномерно движется со скоростью, модуль которой $\upsilon = 5,4$ км/ч. Если за промежуток времени $\Delta t = 0,50$ ч было израсходовано топливо массой m = 5,0 кг (q = 41 МДж/кг), то модуль силы тяги F трактора равен ... к**H**.

22. К тележке массой m=0,49 кг прикреплена невесомая пружина жёсткостью k=400 Н/м. Тележка, двигаясь без трения по горизонтальной плоскости, сталкивается с вертикальной стеной (см. рис.). От момента соприкосновения пружины со стеной до момента остановки тележки пройдёт промежуток времени Δt , равный ... **мс**.



23. По трубе со средней скоростью $\langle \upsilon \rangle = 9.0$ м/с перекачивают идеальный газ ($M = 44 \cdot 10^{-3}$ кг/моль), находящийся под давлением p = 414 кПа при температуре T = 296 К. Если газ массой m = 60 кг проходит через поперечное сечение трубы за промежуток $\Delta t = 10$ мин, то площадь S поперечного сечения трубы равна ... \mathbf{cm}^2


24. На рисунке приведён график зависимости температуры t тела ($c=1000~\rm{Дж/(kr\cdot °C)}$) от времени τ . Если к телу ежесекундно подводилось количество теплоты $Q_0=1,5~\rm{Дж},$ то масса m тела равна ... Γ .

- **25.** Цилиндрический сосуд с идеальным одноатомным газом, закрытый невесомым легкоподвижным поршнем с площадью поперечного сечения $S=120~{\rm cm}^2$, находится в воздухе, давление которого $p_0=100~{\rm k}$ Па. Когда газу медленно сообщили некоторое количество теплоты, его внутренняя энергия увеличилась на $\Delta U=450~{\rm Дж}$, а поршень сместился на расстояние l, равное ... мм.
- **26.** В хранилище поступили отходы, содержащие радиоактивный цезий $^{137}_{55}\mathrm{Cs}$, период полураспада которого $T_{1/2}=30$ лет. Если через промежуток времени $\Delta t=90$ лет в отходах останется m=8,0 г радиоактивного цезия, то масса m_0 поступившего в хранилище цезия равна ... г.
- **27.** Электрическая цепь состоит из источника постоянного тока с ЭДС $\epsilon=120~\mathrm{B}$ и с внутренним сопротивлением $r=2,0~\mathrm{Om}$, конденсатора ёмкостью $C=0,60~\mathrm{mk\Phi}$ и двух резисторов (см. рис.). Если сопротивления резисторов $R_1=R_2=5,0~\mathrm{Om}$, то заряд q конденсатора равен ... **мкК**л.

28. В однородном магнитном поле, модуль индукции которого $B=0,20\,$ Тл, на двух одинаковых невесомых пружинах жёсткостью $k=100\,$ Н/м подвешен в горизонтальном положении прямой однородный проводник длиной $L=1,0\,$ м (см. рис.), Линии магнитной индукции горизонтальны и перпендикулярны проводнику. Если при отсутствии тока в проводнике длина каждой пружины была $x_1=21\,$ см, то после

того, как по проводнику пошёл ток I = 40 А, длина каждой пружины x_2 в равновесном положении стала равной ... **см**.

- **29.** Электрический нагреватель подключен к электрической сети, напряжение в которой изменяется по гармоническому закону. Амплитудное значение напряжения в сети U_0 = 72 В. Если действующее значение силы тока в цепи $I_{\rm д}$ = 0,57 A, то нагреватель потребляет мощность P, равную ... **Вт**.
- **30.** Две вертикальные однородно заряженные непроводящие пластины расположены в вакууме на расстоянии d=70 мм друг от друга. Между пластинами на длинной лёгкой нерастяжимой нити подвешен небольшой заряженный ($|q_0|$ =200 пКл) шарик массой m=630 мг, который движется, поочерёдно ударяясь о пластины. При ударе о каждую из пластин шарик теряет $\eta=36,0$ % своей кинетической энергии. В момент каждого удара шарик перезаряжают, и знак его заряда изменяется на противоположный. Если модуль напряжённости однородного электростатического поля между пластинами E=400 кВ/м, то период T ударов шарика об одну из пластин равен ... мс.